2025MBA報考測評申請中......

說明:您只需填寫姓名和電話即可免費預約!也可以通過撥打熱線免費預約
我們的工作人員會在最短時間內(nèi)給予您活動安排回復。

導讀:現(xiàn)在處于備考沖刺期,雖然真題與模考非常重要,但是同學們在梳理知識的時候不要忘記了基礎的知識點噢~

排列、組合、概率

排列、組合、概率都與集合密切相關(guān)。排列和組合都是求集合元素的個數(shù),概率是求子集元素個數(shù)與全集元素個數(shù)的比值。

以最常見的全排列為例,用 S(A)表示集合 A 的元素個數(shù)。用 1、2、3、 4、5、6、7、8、9 組成數(shù)字不重復的九位數(shù),則每一個九位數(shù)都是集合 A 的一個元素,集合 A 中共有 9!個元素,即 S(A)=9! 如果集合 A 可以分為若干個不相交的子集,則 A 的元素等于各子集元 素之和。

把 A 分成各子集,可以把復雜的問題化為若干簡單的問題分別解決, 但我們要詳細分析各子集之間是否確無公共元素,否則會重復計算。

集合的對應關(guān)系:如果集合 A 與集合 B 存在一一對應的關(guān)系,則 S(A)=S(B)。

如果集 合 B 中每個元素對應集合 A 中 N 個元素,則集合 A 的元素個數(shù)是 B 的 N 倍(嚴格的定義是把集合 A 分為若干個子集,各子集沒有共同元素,且每個 子集元素個數(shù)為 N,這時子集成為集合 A 的元素,而 B 的元素與 A 的子集 有一一對應的關(guān)系,則 S(A)=S(B)*N

例如:從 1、2、3、4、5、6、7、8、9 中任取六個數(shù),問能組成多 少個數(shù)字不重復的六位數(shù)。 集合 A 為數(shù)字不重復的九位數(shù)的集合,S(A)=9! 集合 B 為數(shù)字不重復的六位數(shù)的集合。

把集合 A 分為子集的集合,規(guī)則為前 6 位數(shù)相同的元素構(gòu)成一個子集。 顯然各子集沒有共同元素。每個子集元素的個數(shù),等于剩余的 3 個數(shù)的全排 列,即 3! 這時集合 B 的元素與 A 的子集存在一一對應關(guān)系,則 S(A)=S(B)*3! S(B)=9!/3!

組合與排列的區(qū)別在于:每一個組合中的各元素是沒有順序的。無論這 些元素怎樣排列,都只當作一種組合方式。所以在計算組合數(shù)的時候,只要 分步,就意味有次序。取 N 次,N 件物品的 N!種排列方式都會被當作不同 選法,該選法就重復計了 N!次。

比如 10 個球中任取三個球,取法應該是 C(10,3),但如果先從 10 個中取一個,得 C(10,1),再從 9 個中取一個 得 C(9,1),再從 8 個中取一個得 C(8,1),再相乘結(jié)果成了 P(10,3), 結(jié)果增大了 3!倍。

概率的概念:

在有限集合的情況下,概率是子集元素個數(shù)與全集元素個 數(shù)的比值;

在無限集合的情況下,概率是代表子集的點的面積與代表全集的 點的面積的比值。

概率分布函數(shù)可以描述概率分布的全貌。

離散型的概率分布是一組數(shù) 列,計算事件發(fā)生的概率、數(shù)學期望和方差都使用數(shù)列的計算方法。連續(xù)型的概率分布是一個函數(shù),它等于概率密度函數(shù)的積分,計算事件發(fā)生的概率、 數(shù)學期望和方差都使用積分的計算方法。 概率的概念不難理解,解題能力決定于對數(shù)列和積分中的方法掌握的熟 練程度。 理解了基本概念,對基本數(shù)學方法就更容易掌握。